* COMC 2010 Unofficial Solutions

Henry Wise Wood Math Club 11/29/2010

2. Solve x - (8 - x) = 8 - (x - 8)

3. Three circles centered at O, CD passes through B, A, O. OA=2, OB=4, OC=6, then what is the area of the shaded region?

4. How many digits in $\frac{(3.1 \times 10^7)(8 \times 10^8)}{2 \times 10^3}$

6. On a exam, the average of students who studied was 90%, the average of students who did not study was 40%, and the class average was 85%. What percentage of the class did not study?

7. ABCD is a rectangle, AB=20, BC=10, WA=KC=12, WB=KD=16, find WK.

8. Solve $(x^2 + 3x + 2)(x^2 - 2x - 1)(x^2 - 7x + 12) + 24 = 0$

1a. Find C

Α	А	50
В	С	44
37	57	

1b. Find n

D	D	D	30
F	F	E	55
F	E	E	50
50	n	40	

1c. Find P+Q

Р	Q	Т	R	20
Q	Р	Т	R	20
R	R	R	Т	33
Т	Т	Т	R	19
20	20	19	33	

2a. Parabola $y = x^2 - 4x + 12$ intersects line y = -2x + 20 at A and B. Find the coordinates of A and B.

2b. Find the midpoint M of AB.

2c. A line parallel to y = -2x + 20 intersects the parabola at $P(p, p^2 - 4p + 12)$ and $Q(q, q^2 - 4q + 12)$. Prove p + q = 2. 2d. N is the midpoint of PQ. Explain why MN is vertical.

3a. O is the center of the circle with diameter AC, radius 1. B is a point on the circle and AB is extended to P with BP=1. Let S be the set of points P. If U is in S and UO is perpendicular to AC, find UO.

3b. V is in S and VC is perpendicular to AC. Find VC.

 $PT^2 = PM \cdot PN$

3b. V is in S and VC is perpendicular to AC. Find VC.

3c. Do all points in S lie on one circle?

Ptolemy's Theorem

3c. Do all points in S lie on one circle?

NO.

4a. $f(x) = \left(x + \frac{1}{x}\right) - \left[x + \frac{1}{x}\right]$, x > 0. Determine all x such that f(x) = x.

4b. Suppose that $x = \frac{a}{a+1}$ for some integer a > 1. Prove $x \neq f(x)$ but f(x) = f(f(x)).

4c. Prove that there are infinitely many rational numbers u, 0 < u < 1, so that u, f(u), f(f(u)) are all distinct and f(f(u)) = f(f(f(u))).

I don't know how to do this problem either :(