* COMC 2010 Unofficial Solutions

Henry Wise Wood Math Club 11/29/2010

1. Find $\frac{(9+5)^{2}-(9-5)^{2}}{9 \times 5}$
2. Solve $x-(8-x)=8-(x-8)$
3. Three circles centered at $O, C D$ passes through $B, A, O . O A=2, O B=4, O C=6$, then what is the area of the shaded region?
4. How many digits in $\frac{\left(3.1 \times 10^{7}\right)\left(8 \times 10^{8}\right)}{2 \times 10^{3}}$
5. What point on $y=x$ is closest to $P(-3,9)$?
6. On a exam, the average of students who studied was 90%, the average of students who did not study was 40%, and the class average was 85%. What percentage of the class did not study?
7. $A B C D$ is a rectangle, $A B=20, B C=10, W A=K C=12, W B=K D=16$, find $W K$.

8. Solve $\left(x^{2}+3 x+2\right)\left(x^{2}-2 x-1\right)\left(x^{2}-7 x+12\right)+24=0$

1a. Find C

A	A	50
B	C	44
37	57	

1b. Find n

D	D	D	30
F	F	E	55
F	E	E	50
50	n	40	

1c. Find $P+Q$

P	Q	T	R	20
Q	P	T	R	20
R	R	R	T	33
T	T	T	R	19
20	20	19	33	

2a. Parabola $y=x^{2}-4 x+12$ intersects line $y=-2 x+20$ at A and B . Find the coordinates of A and B.
$2 b$. Find the midpoint M of $A B$.

2c. A line parallel to $y=-2 x+20$ intersects the parabola at $P\left(p, p^{2}-4 p+12\right)$ and $Q\left(q, q^{2}-4 q+12\right)$. Prove $p+q=2$.

2d. N is the midpoint of PQ. Explain why MN is vertical.

3a. 0 is the center of the circle with diameter AC , radius $1 . \mathrm{B}$ is a point on the circle and $A B$ is extended to P with $B P=1$. Let S be the set of points P. If U is in S and UO is perpendicular to $A C$, find UO.

$3 \mathrm{~b} . \mathrm{V}$ is in S and VC is perpendicular to AC . Find VC .

Power of a Point Theorem

$$
P T^{2}=P M \cdot P N
$$

3b. V is in S and $V C$ is perpendicular to $A C$. Find $V C$.

3c. Do all points in S lie on one circle?
Ptolemy's Theorem

$(A B)(C D)+(A D)(B C)=(A C)(B D)$

3c. Do all points in S lie on one circle?

4a. $f(x)=\left(x+\frac{1}{x}\right)-\left\lfloor x+\frac{1}{x}\right\rfloor, x>0$. Determine all x such that $f(x)=x$.

4b. Suppose that $x=\frac{a}{a+1}$ for some integer $a>1$. Prove $x \neq f(x)$ but $f(x)=f(f(x))$.

4c. Prove that there are infinitely many rational numbers $u, 0<u<1$, so that $u, f(u), f(f(u))$ are all distinct and $f(f(u))=f(f(f(u)))$.

I don't know how to do this problem either :(

