DEALING WITH

Math Club 12/19/2011

WHY?

- What is $\infty+\infty$? Is it ∞ ?
- Then $2 \infty=\infty$ and $2=1$.
- What is $\infty-\infty$? Is it ∞ ? Is it $-\infty$? Is it zero?
- What is $\infty \cdot \infty$? Then what's ∞^{∞} ? How about det $\left[\begin{array}{cc}0 & \infty \\ -\infty & \frac{1}{\infty}\end{array}\right]$?
- Aaaaaaaaaaaaaaarrrrrrrrrrrrrrrgggggggggggghhhhhhhhh
- There's a reason why all of these are undefined!

BLAKE'S HOTEL

- Blake is the owner and manager of the infinitely large Convenient Plot Hotel.
- The hotel is all filled up with infinitely many guests, making Blake infinitely rich.
- The hotel has an infinite number of rooms, numbered $1,2,3 \ldots$

BLAKE'S FIRST PROBLEM

- But one day, a new guest arrives at the hotel.
- "Oh no," says Blake. "The hotel is already full!"
- But then, being a brilliant mathematician, Blake realizes that there is a way to arrange a room for the new guest!
- He orders Guest 1 to move across to Room 2, Guest 2 to move to Room 3, and so on.
- Now, Room 1 is empty!

BLAKE'S SECOND PROBLEM

- All goes well: Blake is able to accommodate many, many new guests (although his infinitely many guests are infinitely annoyed at having to move all the time). Until one day...
- An infinitely long tour bus shows up with an infinite number of tourists in it.
- "Uh oh," says Blake. "If I move every guest down one, there are still an infinite number of tourists on the bus!"

BLAKE'S SECOND PROBLEM (CONTINUED)

- But fortunately, Blake comes up with another brilliant solution.
- He moves Guest 1 into Room 2, Guest 2 into Room 4, Guest 3 into Room 6, ...
- The odd rooms are now empty!
- There are infinitely many odd numbers, hence infinitely many rooms for all the guests on the tour bus.
- Everyone is happy.

BLAKE'S THIRD PROBLEM

- One unfortunate day, an infinite number of infinitely long tour buses arrive at Blake's hotel.
- "Un oh," says Blake. "I can't do what I just did: after accommodating one infinite bus of tourists, there will still be an infinite number of infinite tour buses!"
- But yet again, Blake comes up with another brilliant solution.

BLAKE'S THIRD PROBLEM (CONTINUED)

- He gets all the buses to line up in his infinite parking lot.
- Then, going down the diagonal, he numbers the guests $1,3,5$, $7,9 \ldots$ until each guest has a number.
- Then he moves every existing guest in the same way as in the second problem.
- Each new guest then settles into the room with his assigned number. Yay!

WHAT HAVE WE LEARNED?

- Infinity does really weird stuff.
- So don't add infinity to infinity. Just call it undefined.
- Or if you must, at least use a limit!

