Fractals

A tribute to Benoît Mandelbrot (1924-2010)

Math Club 11/01/2010

What is a fractal?

- A fractal is a shape that is self-similar (small parts of a fractal look like the whole fractal)
- Usually a fractal has finite area but infinite perimeter

Mandelbrot Set

Koch Curve

- A simple problem:
 - How many line segments are in K_n ?
 - K₀ has 1 segment
 - K₁ has 4 segments
 - K₂ has 16 segments
 - K_{n+1} has 4 times as many as K_n
 - Therefore K_n has 4^n segments.
- Another simple problem:
 - What is the length of K_n?
 - K_0 is 1 unit long
 - A segment in K_{n+1} is 1/3 as long as one in K_n .
 - Therefore a segment in Kⁿ has length (1/3)ⁿ
 - K_n has 4ⁿ segments
 - Length of $K_n = 4^n * (1/3)^n$
 - Which is equal to $(4/3)^n$.

Sierpinski Triangle

- Problem:
 - How many black triangles are in S_n?
 - 1 triangle in S_0
 - 3 black triangles in S_1
 - S_{n+1} has 3 times more triangles than S_n
 - So S_n has 3^n triangles.
- Another problem:
 - What is the area of S_n ?
 - S_0 has an area of 1
 - Each time, 1/4 of the area is removed
 - So area of S_{n+1} equals 3/4 * S_n
 - S_n has area of $(3/4)^n$

Weierstrass function: even functions can be fractals!

Dimensions

Dimension = 1: Line

Dimension = 2: Square

Dimension = 3: Cube

But why?

Why is a square 2-dimensional and a cube 3-dimensional?

1 square Side length = 1

A square can be broken down into 4 identical pieces with a magnification of 2.

4 squares Side length = 0.5

Now for cubes

1 cube Side length = 1

A cube can be broken down into 8 identical pieces, each with a magnification of 2.

8 cubes Side length = 0.5

Calculating Dimension

• Formula for dimension:

$$D = \frac{\log(\text{number of self similar objects})}{\log(\text{magnificat ion factor})}$$

- What is the dimension?
- Each piece is split into 4 pieces
- Each piece is smaller by factor of 3
- Dimension = $\log(4)/\log(3) \approx 1.26$

 $D = \frac{\log(\text{number of self similar objects})}{\log(\text{magnificat ion factor})}$

Sierpinski Triangle

- What is the dimension?
- Each triangle becomes 3 smaller triangles
- Each triangle is smaller by factor of 2
- Dimension = $\log(3)/\log(2) \approx 1.58$

log(magnificat ion factor)

Cantor Set

- What is the dimension?
- 2 pieces, each smaller by factor of 3
- Dimension = $\log(2)/\log(3) \approx 0.63$

- What is the dimension?
- A cross becomes 5 crosses
- Each cross is 3 times smaller
- Dimension = $\log(5)/\log(3) \approx 1.46$

Menger Sponge

- What is the dimension?
- Cube becomes 20 cubes, each 3 times smaller
- Dimension = log(20)/log(3) ≈ 2.73