## Fractals

## A tribute to Benoît Mandelbrot <br> (1924-2010)

## What is a fractal?

- A fractal is a shape that is self-similar (small parts of a fractal look like the whole fractal)
- Usually a fractal has finite area but infinite perimeter



Mandelbrot Set

## Koch Curve

- A simple problem:
- How many line segments are in $K_{n}$ ?
- $\mathrm{K}_{0}$ has 1 segment
- $K_{1}$ has 4 segments
- $K_{2}$ has 16 segments
- $K_{n+1}$ has 4 times as many as $K_{n}$
- Therefore $K_{n}$ has $4^{n}$ segments.
- Another simple problem:
- What is the length of $K_{n}$ ?
- $\mathrm{K}_{0}$ is 1 unit long
- A segment in $K_{n+1}$ is $1 / 3$ as long as one in $K_{n}$.
- Therefore a segment in $K^{n}$ has length ( $\left.1 / 3\right)^{n}$

- $K_{n}$ has $4^{n}$ segments
- Length of $K_{n}=4^{n} *(1 / 3)^{n}$
- Which is equal to $(4 / 3)^{n}$.


## Sierpinski Triangle

- Problem:
- How many black triangles are in $\mathrm{S}_{\mathrm{n}}$ ?
-1 triangle in $\mathrm{S}_{0}$
- 3 black triangles in $\mathrm{S}_{1}$
$-S_{n+1}$ has 3 times more triangles than $S_{n}$
- So $S_{n}$ has $3^{n}$ triangles.
- Another problem:
- What is the area of $S_{n}$ ?
- $S_{0}$ has an area of 1
- Each time, 1/4 of the area is removed
- So area of $S_{n+1}$ equals $3 / 4 * S_{n}$
$-S_{n}$ has area of $(3 / 4)^{n}$



Weierstrass function: even functions can be fractals!

## Dimensions

Dimension = 1: Line



Dimension = 2: Square


Dimension = 3: Cube

## But why?

Why is a square 2-dimensional and a cube 3-dimensional?


1 square
Side length = 1

A square can be broken down into 4 identical pieces with a magnification of 2 .


4 squares
Side length $=0.5$

## Now for cubes

1 cube
Side length = 1

A cube can be broken down into 8 identical pieces, each with a magnification of 2.


8 cubes
Side length $=0.5$

## Calculating Dimension

- Formula for dimension:

$$
D=\frac{\log (\text { number of self similar objects })}{\log (\text { magnificat ion factor })}
$$



$$
D=\log (4) / \log (2)=2
$$

$$
\mathrm{D}=\log (8) / \log (2)=3
$$

## Koch Curve



- What is the dimension?
- Each piece is split into 4 pieces
- Each piece is smaller by factor of 3
- Dimension $=\log (4) / \log (3) \approx 1.26$

$$
D=\frac{\log (\text { number of self similar objects })}{\log (\text { magnificat ion factor })}
$$

## Sierpinski Triangle

- What is the dimension?
- Each triangle becomes 3 smaller triangles
- Each triangle is smaller by factor of 2
- Dimension $=\log (3) / \log (2) \approx 1.58$





## Cantor Set

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| ■ ■ | ■ ■ | ■ ■ | ■ ■ | ■ | $\square \square$ | ■ ■ | $\square \square$ |
| II II |
| \|||| ||| | \||| |||| | \|||| |||| | \|||| ||| | \|||| ||| | \||| |||| | \||| |||| | \||| |||| |

- What is the dimension?
- 2 pieces, each smaller by factor of 3
- Dimension $=\log (2) / \log (3) \approx 0.63$


## Vicsek Fractal



- What is the dimension?
- A cross becomes 5 crosses
- Each cross is 3 times smaller
- Dimension $=\log (5) / \log (3) \approx 1.46$


## Menger Sponge



- What is the dimension?
- Cube becomes 20 cubes, each 3 times smaller
- Dimension $=\log (20) / \log (3) \approx 2.73$



