AHSMC 2011
Part II

Problem 1.

A cross shaped figure is made up of five unit squares. Determine which has the larger area: the square containing the cross or the circle containing the cross.

Problem 2.

If there is exactly one triplet (x, y, z) satisfying $x^{2}+y^{2}=2 z$ and $x+y+z=t$, determine t.

Problem 3.

On side $B C$ of triangle $A B C$, points P and Q exist such that P is closer to B than Q and $\angle P A Q=\frac{1}{2} \angle B A C$, moreover X and Y are on lines $A B$ and $A C$ respectively. Suppose that $\angle X P A=\angle A P Q$ and $\angle Y Q A=\angle A Q P$. Prove that $P Q=P Q+Q Y$.

Problem 4.

Determine all functions $f: Z \rightarrow N$ where for every $n, f(n-1)+f(n+1) \leq 2 f(n)$.

Problem 5.

Seven teams gather to play one of three sports, and no set of three teams play the same sport among themselves. A triplet is considered diverse if all three sports are played among themselves. What is the maximum possible number of diverse triplets?

- In the above configuration, we notice there are 14 diverse triangles.
- We prove that this is actually the maximum possible configuration.
- Suppose a vertex has A black, B green, and C red edges where $A+B+C=6$.
- Then at least $\binom{A}{2}+\binom{B}{2}+\binom{C}{2}$ non-diverse triangles exist containing this vertex.
- We are not overcounting: if the same triangle is counted twice then it is monochromatic.
- The answer is $\binom{7}{3}-7 \times 3=14$.

