
Chess AI’s, How do they work? 

Math Club 10/03/2011 



Tic Tac Toe 



What is the best move for X? 



Minimax Algorithm 

 

 

 

• Give the game a positive score if White is winning, 

negative score if Black is winning. 

• White does all he can to make the score positive. 

• Black does all he can do make the score negative. 

• White knows that black is doing all he can to make the 

score negative 

• Etc… 



Can we … minimax … it? 



But chess is more complicated! 

• A simple Fermi problem: 

• How many positions will a computer playing chess be 

able to calculate? 

• 𝑏 = branching factor (how many possible moves in a 

chess position) 

• 𝑚 = how many moves we need to look ahead 

• 𝑡 = how many positions the computer is able to look at 

every second 

• 𝑏 ∗ 𝑏 ∗ 𝑏 ∗ 𝑏… branching, so 
𝑏𝑚

𝑡
 

• If b = 35, m = 8, t = 10,000,000 we have to wait more 

than 2 days to go through all the moves! 

 



Heuristics! 

• Heuristics are simple strategies 

that the computer can use to 

“approximate” things. 

• Example: if you can take a piece 

with a pawn, then always do so. 

• Caution: simple heuristics like 

these can lead to very bad 

moves. 



Alpha-Beta Heuristic 

• This heuristic usually reduces time and doesn’t 

do any worse than searching everything. 

• Basically, we look at the better moves first. 

• If we find a move worse than one we already 

looked at, we look at something else. 



Alpha-Beta 

• Suppose we find a really good move, A, so that 

no matter what they do, we have an advantage 

by the third move. 

• Next we find some other move B, where the is 

some move they can make that neutralizes the 

position by the third move. 

• Clearly B is inferior to A, so we can stop 

searching entirely. 



How far can we go now? 

• Suppose that we can always order the moves so that the 

best move is searched first. 

• On your move you have to search 𝑏 positions. 

• But on their move, you only have to search 1 position and 

verify that it’s inferior. 

• Operations is 𝑏 ∗ 1 ∗ 𝑏 ∗ 1… instead of 𝑏 ∗ 𝑏 ∗ 𝑏 ∗ 𝑏… 

• So it takes only 
𝑏𝑚

𝑡
 seconds. 

• If b = 35, m = 8, t = 10,000,000 it takes a fraction of a 

second to search all the moves! (instead of 2 days) 

• In reality the best move is not always first searched. 



Horizon Effect 

• You play QxP, giving yourself a good score 

believing that you won a pawn. 

• But one move after the “horizon”, you don’t see 

PxQ, which loses you a queen. 

• Solution: quiescence search – at the end of the 

search tree, only consider “quiet” moves. 



Opening Books 

• For the start of the game, the computer already 

has prepared a set of opening moves – so it 

doesn’t have to search in the opening. 



Endgame Tablebases 

• Use brute force to prepare a database of 

endgame positions and their optimal responses, 

so you can play perfectly if there are few 

enough pieces left. 



Challenge 

• Survive for as long as possible against 

Chessmaster. 


