Harmonic Conjugates

(And lots of circles)
(Because we really like circles)

Math Club 12/05/2011

First Problem: Apollonius's Problem

- Your ship at point A is chasing a ship on point B.
- Their ship is travelling in some direction at constant speed in a line.
- Your ship is k times faster than their ship.
- Your ship must also sail in a straight line at constant speed.
- Which way should you go?

Second Problem: What is a circle?

- Kaì navtì кह́vtpu kaì ठıaotṅuatı кúк入ov Ypá甲عoӨaı (a circle is defined by a center and a radius) - Euclid's Third Postulate
- Given A and B and a ratio k, a circle is the set of points P such that $\frac{P A}{P B}=k$ - Apollonius

Harmonic Conjugates

- Is it possible to divide a line segment internally and externally in the same ratio?

- Here, let's say that $\frac{A C}{B C}=\frac{A D}{B D}$.
- We say C and D divide $A B$ harmonically.
- Then notice that $\frac{B C}{B D}=\frac{A C}{A D}$.
- So A and B divide CD harmonically as well.
- AB and CD are harmonic conjugates.

Constructing Harmonic Conjugates (1)

- We have points A and B fixed, and have in mind some number k.
- We want a point P such that AP is k times BP.
- Draw a circle of any length around B.
- Then draw a circle k times as long around A.
- Their intersection is a suitable \mathbf{P}, if they intersect.

Constructing Harmonic Conjugates (2)

- We have a point P now.
- Draw the internal bisector of \mathbf{P} and let C be the intersection with AB.
- Draw the external bisector of \mathbf{P} and let D be the intersection.
- AB and CD are harmonic conjugates!

Constructing Harmonic Conjugates (3)

- Now does this actually work?
- By the angle bisector theorem, $\frac{A C}{B C}=\frac{A P}{B P}=k$.
- By the external angle bisector theorem, $\frac{A D}{B D}=\frac{A P}{B P}=k$.
- Hence $\frac{A C}{B C}=\frac{A D}{B D}=k$.
- So $A B$ and $C D$ are harmonic conjugates!

Constructing the Circle of Apollonius

- $\frac{A C}{B C}=\frac{A D}{B D}=k$
- Notice that \mathbf{P} is not part of this, so this works no matter what P we choose.
- Also notice that CPD is a right angle.
- Then P has to lie on the circle with diameter CD!

Page 8

Apollonius, we solved your problem

- Which direction do we need to go?
- Knowing $A B$, we construct the harmonic conjugates CD
- Then we draw the circle with diameter CD
- We know their direction, so they are going to intersect the circle at some point, say Q.
- We just sail towards Q!

