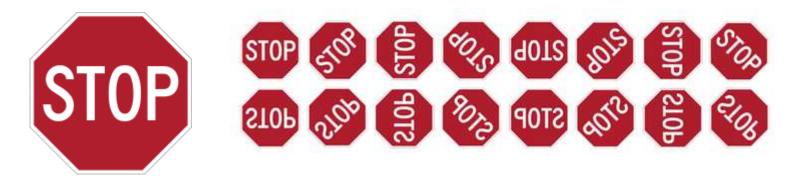
# **AN INTRODUCTION TO GROUP THEORY**

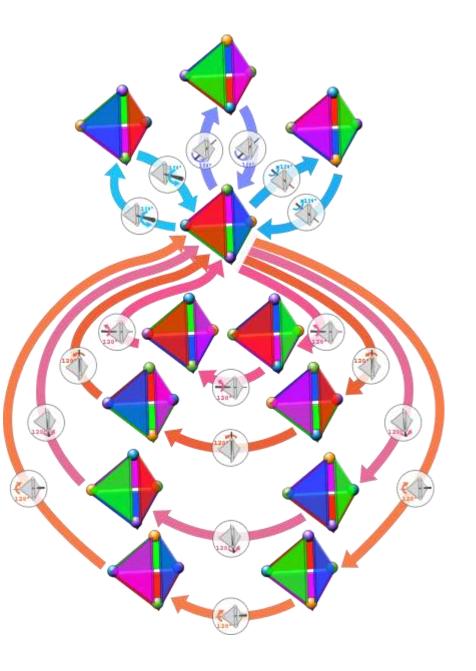
HWW Math Club Meeting (March 5, 2012)

**Presentation by Julian Salazar** 

#### How many rotational symmetries?







- So the 6-pointed snowflake, 12-sided pyramid, and the regular tetrahedron all have the same number of rotational symmetries...
- But clearly the "nature" of their symmetries are different!
- How do we describe this?

#### Numbers measure size.

Groups measure symmetry.

#### TERMINOLOGY

- Set: A collection of items. Ex:  $S = \{a, b, c\}$
- Element: An item in a set. Ex:  $a \in S$
- Binary operator: An operation that takes two things and produces one result. Ex: +, ×

# FORMAL DEFINITION

A **group** is a set *G* with a binary operation \*. We can notate as (*G*,\*) or simply *G*. We can omit the \* symbol.

It must satisfy these properties (axioms):

- Closed: If *a*, *b* are in *G*, *ab* is in *G*.
- Associative: (ab)c = a(bc)
- Identity: There exists e such that ae = a = ea for every a in G. ( $\exists e \in G : ae = e = ea \forall a \in G$ )
- Inverse: For every *a* in *G* there exists  $a^{-1}$  such that  $aa^{-1} = e = a^{-1}a$ . ( $\forall a \in G \exists a^{-1} \in G : aa^{-1} = e = a^{-1}a$ )

EXAMPLE:  $(\mathbb{Z}, +)$ 

The integers under addition are a group.

- Closed: Adding two integers gives an integer
- Associative: It doesn't matter how you group summands; (3+1)+4 = 3+(1+4)
- Identity: Adding an integer to 0 gives the integer
  Inverse: Adding an integer with its negative gives 0
- Is (ℝ − {0}, ×) a group?
  Is ({±1, ±i}, ×) a group?

# IDENTITIES ARE UNIQUE

Theorem: For any group, there's only one identity *e*.

Proof: Suppose e, e' are both identities of G. Then e = ee' = e'.

Ex: For  $(\mathbb{Z},+)$ , only 0 can be added to an integer to leave it unchanged.

#### INVERSES ARE UNIQUE

Theorem: For every *a* there is a unique inverse  $a^{-1}$ .

Proof: Suppose y, z are both inverses of x. Then xy = yx = e and zx = xz = e.

$$y = ey = (zx)y = z(xy) = ze = z$$

Ex: In (Z,+), each integer has a <u>unique inverse</u>, its negative. If a = 3,  $a^{-1} = -3$ .

COMPOSITION (A NOTE ON NOTATION)

Composition is a binary operator.

Take functions f(x) and g(x).

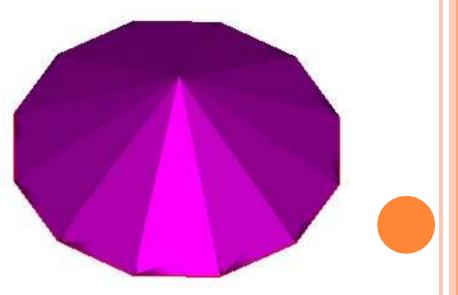
We compose f and g to get fg.

fg(x) = f(g(x)), so we evaluate from right to left.

fg means g first, then f.

- Let *e* be doing nothing (identity)
- Let the binary operation be composition
- Let r be rotation  $1/12^{\text{th}}$  clockwise
- So  $rr = r^2$  means...
- rotating 1/6<sup>th</sup> of the way clockwise!

•  $G = \{e, r, r^2, r^3, \dots, r^{11}\}$ 



# • $G = \{e, r, r^2, r^3, \dots, r^{11}\}$

- Closed: No matter how many times you rotate with *r*, you'll end up at another rotation
- Associative: Doesn't matter how you group the rotations
- Identity: You can do nothing
- Inverse: If you rotate by  $r^n$ , you must rotate  $r^{12-n}$  to return to the original state



• 
$$G = \{e, r, r^2, r^3, \dots, r^{11}\}$$

- What is rotating counter-clockwise then?
- It's  $r^{-1}$  (the inverse of r).
- But wait!  $r^{-1} = r^{11}$ .
- So r(r<sup>11</sup>) = e. In plain words, rotating 1/12<sup>th</sup> twelve times gets you back to where you started =O



# • $G = \{e, r, r^2, r^3, \dots, r^{11}\}$

- But inverses aren't unique!  $r(r^{23}) = e$ , right?
- Yeah, but the net effect of  $r^{23}$  is the same as that of  $r^{11}$ .
- So in our set, we only have  $r^{11}$ .
- We only count "unique" elements for our group.

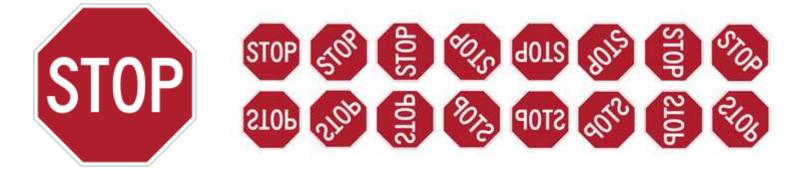


- Let *e* be doing nothing (identity)
- Let the binary operation be composition
- Let r be rotating the sign  $1/8^{\text{th}}$  clockwise
- Let *s* be flipping the sign over
- $G = \{e, r, r^2, \dots, r^7, s, rs, r^2s, \dots, r^7s\}$



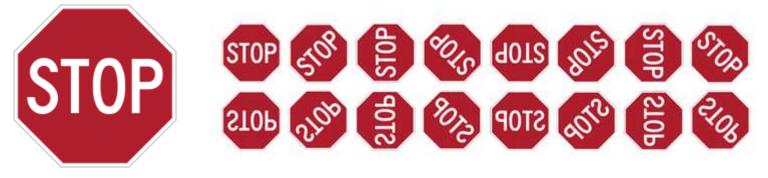
# • $G = \{e, r, r^2, \dots, r^7, s, rs, r^2s, \dots, r^7s\}$

- Closed: No matter which rotations you do, you'll end up at one of the 16 rotations
- Associative: Doesn't matter how you group the rotations
- Identity: You can do nothing
- Inverse: You can always keep rotating to get back to where you started



#### • $G = \{e, r, r^2, \dots r^7, s, rs, r^2s, \dots, r^7s\}$

- What is  $s^{-1}$ ?
- What is  $(r^2 s)^{-1}$ ?
- What is  $r^2 s r^2 s$ ?
- What is  $r^4s^2$ ?
- $r^2 s r^2 s \neq r^4 s^2$ .
- We're not multiplying (*ab* not necessarily = *ba*)



# CATEGORIZING GROUPS

Cyclic groups: Symmetries of an *n*-sided pyramid.
Note: (Z,+) is an *infinite* cyclic group.
Dihedral groups: Symmetries of a *n*-sided plate.

#### **Other:**

**Permutation groups:** The permutations of *n* elements form a group.

Lie groups, quaternions, Klein group, Lorentz group, Conway groups, etc.

# ISOMORPHISM

Consider a triangular plate under rotation. Consider the ways you can permute 3 elements. Consider the symmetries of an ammonia molecule.

They are ALL the same group, namely  $\{e, r, r^2, s, rs, r^2s\}$ 

Thus the three are isomorphic. They fundamentally have the same symmetry.



## GROUPS ARE NOT ARBITRARY!

Order: # of elements in a group

There are only 2 groups with order 4:  $\{e, r, r^2, r^3\}, \{e, r, s, rs\}$ 

There are only 2 groups with order 6:  $\{e, r, r^2, r^3, r^4, r^5\}$ ,  $\{e, r, r^2, s, rs, r^2s\}$ 

But there's only 1 group with order 5!?  $\{e, r, r^2, r^3, r^4\}$ 

# USING GROUPS

With groups you can:

- o >>Measure symmetry<<</p>
- Express the Standard Model of Physics
- Analyze molecular orbitals
- Implement public-key cryptography
- Formalize musical set theory
- Do advanced image processing
- Prove number theory results (like Fermat's Little Theorem)
- Study manifolds and differential equations
- And more!