Introduction to Multiplicative Functions Math Club 4/2/2012

What's the point?

- How many divisors are there of 6800000?
- What's the sum of divisors of 6800000?
- What are the last five digits of 21⁶⁸⁰⁰⁰⁰⁰?
- ...
- With multiplicative functions, we can solve these problems, and many many more!

What is a multiplicative function?

- A multiplicative function is an integer function where for all <u>coprime</u> m, n, f(mn) = f(m)f(n)
- (note: this might not work if m and n share some common divisors)
- For instance, the identity function f(a) = a is multiplicative.

- Let d(n) be the number of divisors of n.
- Then d(n) is a multiplicative function.
- Do you see why?

- Consider the number $5^3 \times 7^2$.
- The divisors of 5³ are 1, 5, 5², 5³.
- The divisors of 7^2 are 1, 7, 7^2 .
- If you multiply a number in the first list with one in the second list, you will get a number that divides into $5^3 \times 7^2$.
- Hence the number has 12 divisors.

Easy Problem #1

How many divisors of 6800000 are there?

- Let $\sigma(n)$ be the sum of divisors of n.
- Then $\sigma(n)$ is multiplicative. (we're not going to prove this)

Easy Problem #2

What is the sum of the 96 divisors of 6800000?

- Let φ(n) be the number of integers in the range
 [1,2,...,n] that don't share any factors with n.
- For instance, $\phi(12) = 4$ because 1,5,7,11 don't have any factors in common with 12, but everything else does.
- The function $\phi(n)$ is multiplicative (not going to prove this today)

Practice with Phi

- Calculate $\phi(13^8)$.
- **Calculate** $\phi(6800000)$.

Euler's Theorem

- If a and n don't have any factors in common, then $a^{\phi(n)} \equiv 1 \pmod{n}$
- For instance, since $\phi(12) = 4$, we have 5^4 has a remainder of 1 when divided by 12.

Easy Problem #3

- Find the last five digits of 21⁶⁸⁰⁰⁰⁰⁰
- Hint: We want to find 21⁶⁸⁰⁰⁰⁰⁰ mod 10⁶.
- Hint: Use Euler's theorem: $21^{\phi(10^6)} \equiv 1 \mod 10^6$