

Introduction to Multiplicative Functions Math Club 4/2/2012

What's the point?

- How many divisors are there of $\mathbf{6 8 0 0 0 0 0}$?
- What's the sum of divisors of $\mathbf{6 8 0 0 0 0 0}$?
- What are the last five digits of $21^{6800000}$?
- With multiplicative functions, we can solve these problems, and many many more!

What is a multiplicative function?

- A multiplicative function is an integer function where for all coprime $m, n, f(m n)=f(m) f(n)$
- (note: this might not work if m and n share some common divisors)
- For instance, the identity function $f(a)=a$ is multiplicative.

Multiplicative Function \#1

- Let $d(n)$ be the number of divisors of n.
- Then $d(n)$ is a multiplicative function.
- Do you see why?

Multiplicative Function \#1

- Consider the number $5^{\mathbf{3}} \times \mathbf{7}^{\mathbf{2}}$.
- The divisors of 5^{3} are $1,5,5^{2}, 5^{3}$.
- The divisors of $\mathbf{7}^{\mathbf{2}}$ are $\mathbf{1 , 7 , \mathbf { 7 } ^ { \mathbf { 2 } }}$.
- If you multiply a number in the first list with one in the second list, you will get a number that divides into $5^{\mathbf{3}} \times \mathbf{7}^{\mathbf{2}}$.
- Hence the number has 12 divisors.

Easy Problem \#1

- How many divisors of 6800000 are there?

Multiplicative Function \#2

- Let $\sigma(n)$ be the sum of divisors of \mathbf{n}.
- Then $\sigma(n)$ is multiplicative. (we're not going to prove this)

Easy Problem \#2

- What is the sum of the 96 divisors of $\mathbf{6 8 0 0 0 0 0}$?

Multiplicative Function \#3

- Let $\phi(n)$ be the number of integers in the range [1,2,...,n] that don't share any factors with n.
- For instance, $\phi(12)=4$ because $1,5,7,11$ don't have any factors in common with 12, but everything else does.
- The function $\phi(n)$ is multiplicative (not going to prove this today)

Practice with Phi

- Calculate $\phi\left(13^{8}\right)$.
- Calculate $\phi(6800000)$.

Euler's Theorem

- If a and n don't have any factors in common, then $a^{\phi(n)} \equiv 1(\bmod n)$
- For instance, since $\phi(12)=4$, we have 5^{4} has a remainder of 1 when divided by 12.

Easy Problem \#3

- Find the last five digits of $\mathbf{2 1}{ }^{\mathbf{6 8 0 0 0 0 0}}$
- Hint: We want to find $21^{6800000} \bmod 10^{6}$.
- Hint: Use Euler's theorem: $21^{\phi\left(10^{6}\right)} \equiv 1 \bmod 10^{6}$

