

THE INVERSION

- The inversion is a transformation about a circle of radius k.
- Basically the inversion turns the space inside out, so everything inside the circle goes outside and everything outside goes inside.
- The closer a point is to the center, the farther away the inverse is.
- The inverse of a point P is the point P^{\prime} such that $\frac{T P}{k}=\frac{k}{T P}$, or $T P \cdot T P^{\prime}=k^{2}$.

BASIC PROPERTIES OF THE INVERSION

- A line passing through T inverts into itself.
- A line not passing through T inverts into a circle passing through T.
- A circle passing through T inverts into a line not passing through T.
- A circle not passing through T inverts into another circle.
- I'm not going to prove all of these here.
- Basically an inversion turns lines into circles and circles into lines.

INVERSION AND SIMILAR TRIANGLES

- An important property of the inversion is that angles are preserved (to an extent).
- Here $O A \cdot O A^{\prime}=k^{2}$ and $O B \cdot O B^{\prime}=k^{2}$ so $\frac{O A}{O B}=\frac{O B^{\prime}}{O A^{\prime}}$.
- Thus triangles $O A B$ and $O B^{\prime} A^{\prime}$ are similar. We have $\angle O A B=\angle O B^{\prime} A^{\prime}$.
- The ratio of similarity, or $\frac{O B^{\prime}}{O A}$ is $\frac{k^{2}}{O B \cdot O A}$. Thus $A^{\prime} B^{\prime}=\frac{k^{2} A B}{O A \cdot O B}$.

REALLY EASY PROBLEM \#1

Proposed by Hotta Jinsuke (Japan), 1788

REALLY EASY PROBLEM \#2

International Mathematical Olympiad 2003 Shortlist (G4)
Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose the circles intersect at four distinct points A, B, C, D. Then prove that $\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}$.

REALLY EASY PROBLEM \#3

$P Q$ is the diameter of a semicircle. A circle is tangent to the semicircle and tangent to $P Q$ at $C . A B$ is perpendicular to $P Q$ and is tangent to the circle; it intersects the semicircle at A and $P Q$ at B. Prove that $A C$ bisects $\angle P A B$.

