Math Club 5/9/2011
THEYRE ALL COMING TO GE'T YOU
(how mathematicians fool you with their deceptive proofs)

THE MATH GAME

\times I will present a completely incorrect proof

* You have to pinpoint the error in the proof

EXAMPLE

* I shall prove that $2=1$.
\times Let $a=b$.
$\times a^{2}=a b$
$\times 2 a^{2}=a^{2}+a b$
$\times 2 a^{2}-2 a b=a^{2}-a b$
$\times 2\left(a^{2}-a b\right)=1\left(a^{2}-a b\right)$
$\times 2=1$
* The fallacy is the last step.
\times Since $a=b$, we are dividing both sides by zero!

ROUND 1

* I shall prove that $1=0$.
\times Take the statement $x=1$.
* Take the derivative of both sides: $\frac{d}{d x} x=\frac{d}{d x} 1$
\times Then $1=0$.
* What went wrong?

ROUND 2

* I shall prove that $1+2+4+8+16+\cdots=-1$.
\times Let $x=1+2+4+8+\cdots$.
x Then $2 x=2+4+8+16+\cdots$.
- $2 x-x=-1$
x $1+2+4+8+\cdots=-1$
* What went wrong?

ROUND 3

* I shall prove by induction that in any group of n people, either they are all boys, or they are all girls.
x This is obviously true for $n=1$.
\times Let G be any group of $n+1$ people. We prove that any two people x and y in G are of the same sex.
\times Consider everyone except x. All of them are the same sex.
* Also consider everyone except y. All of them are the same sex
* Take any member z, who has the same sex as x and y.
* Therefore any x and y in the group have the same sex.
\times The theorem is proved. What went wrong?

ROUND 4

* I shall prove that $0=1$.
* Begin by evaluating $\int \frac{1}{x} d x$ by parts.
* Let $u=\frac{1}{x}$ and $\mathrm{d} v=d x$.
* Then $d u=-\frac{1}{x^{2}} d x$ and $v=x$.
\times Hence $\int \frac{1}{x} d x=\frac{x}{x}-\int-\frac{x}{x^{2}} d x=1+\int \frac{1}{x} d x$.
* Therefore $0=1$. What went wrong?

ROUND 5

ROUND 6

* I can destroy the universe with a pencil!
* Assume that there is no friction, pencil is uniform, etc, etc.
* Put the pencil up to a wall and pull one end away with constant velocity while the other end slides down the wall.
x As your end of the pencil is distance x from the wall, the other end is distance $y=\sqrt{L^{2}-x^{2}}$ where L is the length of the pencil.
Differentiating with respect to time, $\frac{d y}{d t}=-\frac{x \frac{d x}{d t}}{\sqrt{L^{2}-x^{2}}}$
* But $\frac{d x}{d t}=v$ so $\frac{d y}{d t}=-\frac{x v}{\sqrt{L^{2}-x^{2}}}$

So $\frac{d y}{d t}$ approaches $-\infty$ as $x \rightarrow L$. The pencil crashes on the ground at infinite speed and infinite force!

