
Overview of 3D Graphics

Programming
Henry Wise Wood

Math Club

March 12, 2012

Components of a 3D game

Input
handling

Physics:
movement

Collision
detection

Networking
(multiplayer
games only)

A.I. decisions

3D drawing

Sounds

2D coordinate systems

 Standardized in the
math world

 NOT standardized in
the computer
graphics world

 Sometimes, the same
game engine may use
different 2D
coordinate systems
for different
purposes

3D coordinate systems

Left-handed Modified left-handed Right-handed

Used by DirectX

(Windows / Xbox)

Used by Sony PlayStation Used by OpenGL and

Nintendo

Y

Z

X

Z

X

Y

Y

Z

X

Source: http://softimage.wiki.softimage.com/xwalkdocs/ftk_TemplateRef_SI_CoordinateSystem.htm

Basic terminology of 3D graphics
 Matrix: A rectangular array of numbers

For example:
1 2 3
4 5 6
7 8 9

 or 1 or
1 2 3
4 5 6

 Vector / point / column matrix: Consists of 3 numbers, representing a point or a
direction

For example (1,2,3) or
1
2
3

 Matrix multiplication: When you multiply a 3x3 matrix by a vector, you get another
vector.

For example:
2 0 0
0 2 0
0 0 2

1
2
3

=
2
4
6

When you multiply a 3x3 matrix by another 3x3 matrix, you get another 3x3 matrix.

For example:
1 2 3
4 5 6
7 8 9

1 0 0
0 1 0
0 0 1

=
1 2 3
4 5 6
7 8 9

3D objects

 Every 3D object is basically made of 2 things:
◦ Triangles

◦ Zero or more 2D textures
(images drawn onto the triangles)

Vertices

 A vertex is a point in space with some

additional properties attached

 Basically, each vertex consists of:

◦ Cartesian coordinates (x,y,z)

◦ Color (a,r,g,b)

◦ Texture coordinates (u,v)

 Objects can share vertices

as long as these properties

are the same

Y

Z

X
5

3

2

(5,3,2)

Vertex sharing - example

5 vertices 6 vertices

(1,1,red)

(0,0,red) (2,0,red)

(2,2,red) (0,2,red)

(1,1,red) and

(1,1,green)

(0,0,red) (2,0,red)

(2,2,green) (0,2,green)

Y Y

X X

Textures

 A texture is an image
drawn onto a triangle

 A single triangle can use
only part of a texture

 Every vertex is assigned
a texture coordinate
(u, v)

 The texture coordinate
tells the graphics card
which part of the
texture should be used
to draw the triangle

(x=0,y=0,u=0.5,v=0) (x=1,y=0,u=0,v=0)

(x=0,y=1,u=0.5,v=1)

V-axis

U-axis

X

Y

(0,0)

(1,1)

Textures

Textures

• Color of texture

is combined with

color of vertex

• This cube

requires 24

vertices and 12

triangles

(x=1, y=1, z=1,

color=green, u=0, v=0)

Y
Z X

Graphics pipeline

 The process by which 3D objects are drawn is known
as the graphics pipeline

 There are two main types of graphics pipelines: fixed-
function and shader

 Fixed-function: The graphics card performs a fixed
series of steps to render the scene

 Shader: The programmer writes a program (shader)
that runs on the graphics card to render the scene.
Using shaders, you can create more realistic effects
like water ripples/reflection

 Side note: Shaders have many uses outside of 3D
graphics, where they can be used to perform general
computing tasks (e.g. Nvidia CUDA and OpenCL)

Fixed-function vertex pipeline

Simplified overview of steps

1. The vertices are multiplied by the world
matrix, which transforms each vertex into
its correct position

2. The vertices are multiplied by the
projection matrix, which converts each
3D vertex into a 2D vertex to be displayed
on the screen

3. Each triangle is rendered with its
corresponding texture, using depth
testing to determine which triangles are
on top of others

World matrix

 Before rendering, each vertex is first transformed by the
world matrix (also called the modelview matrix)

 The world matrix is supplied by the programmer and can be
changed at any time

 By changing the world matrix, we can rotate, scale, and
translate each point in the same way

 That way, we don’t have to re-send all our vertices to the
video card if we just want to transform all of them in the
same way

• The same set of vertices can be used to draw all 5 cubes. Each cube

is simply drawn with a different world matrix

• Only 8 vertices required, not 40

World matrix

 If the world matrix is the identity matrix, the vertices are not
changed

1 0 0
0 1 0
0 0 1

𝑥
𝑦
𝑧

=
𝑥
𝑦
𝑧

 Other matrices transform vertices in different ways
0 0 4
0 3 0
2 0 0

𝑥
𝑦
𝑧

=
2𝑧
3𝑦
4𝑥

 We can multiply several transformation matrices together to
create a new transformation matrix. For example, if [A]
rotates everything by 90 degrees about the X-axis and [B]
translates everything 5 units in the negative Z direction, then
[B][A] will rotate then translate.

World matrix: Camera

 To implement a camera, we have to move

all the objects in the opposite of the

direction of the camera using the world

matrix

 For example, if the camera rotates to the

right, we have to rotate all of the vertices

towards the left

Projection matrix

 Next, each vertex is transformed by a projection matrix

 The projection matrix transform each 3D point into 2D
points that can be displayed on the screen

 There are two main types of projection matrices,
orthographic and perspective

 Perspective: Objects appear smaller when further away

 Orthographic: Objects are the same size no matter what

Projection matrix

 Orthographic projection – z coordinate is

thrown out the window
1 0 0
0 1 0
0 0 0

𝑥
𝑦
𝑧

=
𝑥
𝑦
0

 Perspective projection – more

complicated (involves additional

coordinate)

Depth testing

 How does the graphics card decide
which triangles are hidden by others?

 The most common solution is called
depth testing (also known as z-
buffering)

 For every frame, the graphics card
must keep track of the nearest seen Z
value for every single pixel on the
screen

 When a triangle is drawn, the Z value
of each pixel is compared against the
value in the Z buffer and will only be
drawn if it is nearer

Y

Z

X

Depth testing

3m away
1m away

2m away

3m away
1m away

2m away

Pixels here

not drawn

