Problem-Solving Techniques (PART ONE)

HWW Math Club Meeting (April 4, 2011)

Presentation by Julian Salazar

NO CALCULATORS.

Intro: Cool number, BRO

In this problem we deduce certain properties of the number 314159265.

1. Prove that 45 | 314159265 .
2. Calculate $\left\lceil\log _{10}(314159265)\right\rceil$.
3. What is the $314159265^{\text {th }}$ derivative of $\sin (\mathrm{x})$?

Approach 1: TEAKETTLE PRINCIPLE

- Reduce an unknown problem to one you already know how to do (well, duh).
- Solve

$$
\begin{gathered}
8 x^{0.73}-x^{0.48}-69 x^{0.23}=0 \\
\Rightarrow x^{0.23}\left(8 x^{0.5}-x^{0.25}-69\right)=0 \\
\text { let } \left.u=x^{0.25}\right) \Rightarrow x^{0.23}\left(8 u^{2}-u-69\right)=0 \\
\Rightarrow-x^{0.23}(8 u+23)(u-3)=0 \\
x=0 \text { and } x=81 \text { are solutions. }
\end{gathered}
$$

Protip: Graphing is Cool

- How many real solutions are there to the equation:

$$
\begin{gathered}
x^{100}-4^{x} * x^{98}-x^{2}+4^{x}=0 ? \\
\Rightarrow x^{98}\left(x^{2}-4^{x}\right)-\left(x^{2}-4^{x}\right)=0 \\
\Rightarrow\left(x^{98}-1\right)\left(x^{2}-4^{x}\right)=0 \\
x^{98}-1=0 \text { gives two real solutions, } x= \pm 1 \\
x^{2}-4^{x} \text { factored gives }\left(x-2^{x}\right)\left(x+2^{x}\right), \text { not very } \\
\text { helpful, so we graph! }
\end{gathered}
$$

\therefore There are three real solutions.

Approach 2:
 Work Backwards, Write Forwards

Prove the two-variable AM-GM inequality:

$$
\frac{a+b}{2} \geq \sqrt{a b} \forall a, b \geq 0
$$

Proof:

$$
\begin{gathered}
(a-b)^{2} \geq 0 \\
\Rightarrow a^{2}-2 a b+b^{2} \geq 0 \\
\Rightarrow a^{2}+2 a b+b^{2}=(a+b)^{2} \geq 4 a b \\
\Rightarrow a+b \geq 2 \sqrt{a b} \\
\Rightarrow \frac{a+b}{2} \geq \sqrt{a b} .
\end{gathered}
$$

Protip: When all else fails...

- (Hypatia 2007) Cities A,B,C,D,E are all connected to each other. Penny starts at A, visits all cities, then returns to A . If her route is of the form $\mathrm{A} \rightarrow$ _ $\rightarrow \mathrm{E} \rightarrow$ _ $\rightarrow \mathrm{A}$, how many possible routes are there?
- Solution (this is an official one!):
- List the possibilities: $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$, $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{D} \rightarrow \mathrm{E} \rightarrow \mathrm{C} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$, $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$, $\mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$
- Therefore there are 6 possible routes.

Approach 3: LOOK BEFORE YOU LEAP

- Figure out what you want and how you're going to get it.
- (Euclid 2002): Three metal rods of lengths 9, 12, and 15 and negligible widths are welded to form a right-angled triangle held horizontally. A sphere of radius 5 sits on the triangle so that it is tangent to each rod. How high is the top of the sphere from the plane of triangle?

Approach 3: LOOK BEFORE YOU LEAP

- We want the height of sphere above the triangle
- Thus we want where on sphere at which the triangle is tangent to the sphere
- This would be the incircle (the unique circle inscribed in triangle)
- Tasks:
- Find the incircle's unique radius (the inradius)
- Find where along the sphere that radius occurs
- Find height from there to the top of the sphere

Approach 3: Look Before you Leap

- $A=r s$
- $r_{i}=\frac{A}{s}=\frac{b h}{2 s}=\frac{(9)(12)}{2\left(\frac{9+12+15}{2}\right)}=3$

- $r_{s}=5, r_{i}=3$ so $h=4$ (to center of sphere)
- The other half of the circle has height $=5$, so
- The top of the sphere is 9 units above the plane of the triangle.

TEH ENDS (FOR NAO)

Cool Inequality, Bro:
Prove $(x+y)(y+z)(x+z) \geq 8 x y z$ for non-negative x, y, z.

Sample problem covered next time:
Let $S(n)$ be the digit sum function.
Find $S\left(S\left(S\left(S\left(4444^{4444^{4444}}\right)\right)\right)\right)$.

